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Theory to practice: global 
sensitivity analysis of the 
Aimsun meso model

INTRODUCTION 
"What makes modelling and scientific inquiry in general 
so painful is uncertainty. Uncertainty is not an accident 
of the scientific method, but its substance" (1). The main 
sources of model uncertainty arethe (in)adequacyof the 
modelscompared to reality but also, (uncertain)modelin-
puts.

Together with uncertainty analysis, sensitivity analysis 
(SA) studies how uncertainties in the model inputs affect 
the model response: uncertainty analysis quantifies the 
output variability while sensitivity analysis describes the 
relative importance of each input in determining this 
variability (1,2).

Uncertainty due to the models’ inadequacy may arise 
from sources such as modelling basic assumptions, the 
structural equations, the level of discretisation, the nu-
merical resolution method, etc. Reducing this part of un-
certainty is mainly the responsibility of model developers 
rather than the users as it usually requires substantial 
modifications to the modelling structure. 

In contrast, any uncertainty due to uncertain model 
inputs rests almost totally on the shoulders of the model 
users. In order to reduce this part of the uncertainty, it is 
necessary to reduce as much as possible the uncertainty 
in the model inputs. Yet different inputs can have a dif-
ferent influence on the model outputs and alsothe uncer-
tainty they embody can affect the outputs in different 
ways. When the number of these inputs increases to sev-
eral hundred, as is the case of many complex models 
available today, understanding which ones need our at-
tention for their estimation becomes crucial. In this 
framework, sensitivity analysis plays a fundamental role, 
as it may direct the analyst towards the identification of 
the relative importance of each input. This is also demon-

strated by the fact that sensitivity analysis has been also 
recognized in official guidelines ofinternational institu-
tions (3,4).

In addition, sensitivity analysis can be used to i) un-
cover technical errors in the model, ii) identify critical re-
gions in the space of the inputs, iii) establish priorities for 
research, iv) simplify models and v) defend against analy-
sis falsifications. 

As models are becoming more complex, global sensi-
tivity analysis techniques have made significant 
progresses in the last decade. Unfortunately it is common 
opinion that only a minority of sensitivity analysis prac-
titioners make use of the most sophisticated techniques 
made available in the recent years (1). In fact, as discussed 
in the next section for what concerns sensitivity analysis 
of traffic simulation models, the most commonly 
adopted approach to sensitivity analysis still remains the 
One Ata Time (OAT). OAT measures, are based on the es-
timation of partial derivatives, and assess how uncer-
tainty in one factor affects the model output keeping the 
other factors fixed to a nominal value. The main draw-
back of this approach is that interactions among factors 
cannot be detected, since they require the inputs to be 
changed simultaneously. In addition, this approach per-
tains to a family of sensitivity analysis techniques usually 
referred to as “local sensitivity analysis”, used to derive 
information about the behaviour of the model around a 
certain point (for example around the solution of the 
calibration problems to ascertain the stability of such a 
solution) rather than exploring the input space. For this 
reason it should not be considered a good practice. How-
ever, its simplicity and parsimony makes it the preferred 
choice for practitioners (5).

The problem is that, even with the most sophisticated 
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This paper examines a metamodel-based technique 
for model sensitivity analysis and applies it to the 
Aimsun mesoscopic model. 
The paper argues that sensitivity analysis is crucial 
for the best use of the traffic simulation models 
while also acknowledging that the main obstacle to 
an extensive use of the most sophisticated 
techniques is the high number of model runs they 
usually require. To get around this problem, the 
paper considers the possibility of performing 
sensitivity analysis not on a model but on its 

metamodel approximation. Important issues arising 
when estimating a metamodel have been 
investigated and commented on in the specific 
application to the Aimsun model. Among these 
issues is the importance of selecting a proper 
sampling strategy based on low discrepancy 
random number sequences and the importance of 
selecting a class of metamodels able to reproduce 
the inputs-ouputs relationship in a robust and 
reliable way. 
Sobol sequences and Gaussian process metamodels 

have been recognized as the appropriate choices.
The paper assesses the proposed methodology by 
comparing the results of the application of variance-
based sensitivity analysis techniques to the 
simulation model and to a metamodel estimated 
with 512 model runs, on a variety of traffic 
scenarios and model outputs. Results confirm the 
powerfulness of the proposed methodology and also 
open up to a more extensive application of 
sensitivity analysis techniques to complex traffic 
simulation models.
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sampling strategies, the exploration of the input space 
required by any global sensitivity analysis approach re-
quires many model runs to be performed. When the 
model is computationally expensive, which is fairly com-
mon in the applications, sensitivity analysis quickly be-
comes unfeasible. To deal with this issue, in recent years, 
some studies have made use of metamodels. Metamodels 
provide inexpensive emulators of complex and large 
computational models (6,7,8). The computational cost of 
estimating an emulator is generally dependent on the 
number of inputs, but the dependence is much weaker 
thanthat involving the calculation of commonly adopted 
sensitivity indices.

In the field of traffic simulation, metamodels have 
been recently adopted to verify the effectiveness of traffic 
model calibration procedures (9). The use of a metamodel 
was indispensible in assessing different calibration proce-
dures, due to the huge amount of time otherwise required 
using the simulation model. In addition, in (9), the meta-
model adopted, a type of Gaussian process metamodel 
proved to be able to reproduce, both globally and locally, 
the real objective function of the calibration problem, 
even with a small number of model simulations.

For this reason, in the present paper, we adopt a Gaus-
sian process metamodel for the evaluation of variance-
based sensitivity indices. In practice, indices are calcu-
lated based on the evaluation of the metamodel on sev-
eral input-parameter combinations. Indices calculated in 
this way are then compared to those obtained using the 
traffic simulation models instead. 

The procedure was tested on the mesoscopic version of 
the Aimsun simulation model (10) in five different syn-
thetic traffic scenarios. The experience carried out shows 
that, even with a metamodel estimated on 128 simula-
tions, sensitivity indices are approximately the same as 
those calculated with 36,864 simulations, with a conse-
quent significant reduction of the total computation 
time. Key in this process is the definition of the sample of 
input parameters combinations. The sample, indeed, re-
quires the provision of an optimal filling of the input 
space (8). To this aim, in the present study, we adopted 
the Sobol sequence of quasi-random numbers (11), which 
proved to be one of the sequences with the lowest dis-
crepancy (that is the comparison between the intervals 
volume and the number of points within these intervals 
in the input space).

VARIANCE-BASED METHODS ON THE SOBOL 
DECOMPOSITION OF VARIANCE 
Variance-based methods based on Sobol variance decom-
position has been chosen in this application, being con-
sidered one of the most recent and effective global sensi-
tivity analysis techniques. The original formulation of 
the method came from I. Sobol (12,13), who provided 
the analytical derivation and the Monte Carlo-based im-
plementation of the concept. The latest setting for its 
practical implementation is by Saltelli et al. (6). 

Given a model in the form: 
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with Y a scalar, a variance-based first order effect for a 

generic factor Zi can be written as 
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 where Zi is the i-th factor and Z~i is the matrix of all 

factors but Zi. Furthermore it is known that 
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Equation (3) shows that if for Zi to be an important fac-

tor we need that EZi (Vz~i(YlZi)) is small, that it is to say 
that the closer VZi (Ez~i(YlZi)) to the unconditional vari-
ance V(Y) the higher the influence of Zi. 

Thus we may define our first order sensitivity index of    
Zi with respect to Y as:
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Sensitivity indices as in equation (4) can be calculated 

per each factor and per each factors combination. This, 
however, would need a huge amount of model evalua-
tions. In order to reduce the efforts required, a synthetic 
indicator to be coupled with the first order sensitivity 
index is the total effects index, defined as follows (6): 
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Total effects index of the input factor i provides the 
sum of first and higher order effects (interactions) of fac-
tor Zi. When the total index is STi = 0 the i-th factor can 
be fixed without affecting the outputs’ variance. If  STi ~= 0 
the approximation made depends on the value of STi. It is 
worth noting that while Σr

i =1 Si <_ 1, Σr
i =1 Si >_ 1, both being 

equal to one only for additive models. 
The calculation of the variance-based sensitivity indi-

ces presented in equations (4) and (5) can be performed 
in a Monte Carlo framework. This issue has been object 
of research in recent decades. Different approaches and 
strategies may provide results with different accuracy and 
efficiency. The approach adopted in the present work has 
been specified in (1,6) and results as one of the most effi-
cient approaches. In total it requires the evaluation of the 
model [N∙(r+2)] times. Since N usually varies from a few 
hundred to several thousand, the number of evaluation 
required by this efficient approach is not, in any case, 
negligible, especially for complex and expensive models. 

In the field of traffic flow modelling, to the best of the 
authors’ knowledge, this method based on quasi-Monte 
Carlo sampling in the parameters space has been used 
only in Punzo and Ciuffo (14) in order to individuate the 
parameters which limit the calibration of two well-
known car-following models. However,so far, no other 
studies in this context made use of this technique to per-
form global sensitivity analysis. The reason is mainly 
connected to the still high number of model evaluations 
required by the technique. In this light, when we move 
from car-following applications, like (14), in which each 
model evaluation requires less than a few seconds, to traf-
fic model simulations, which may require several hours 
per model evaluation, the application of this technique, 
though efficient, quickly becomes unfeasible. 

Nonetheless, renouncing the reliability and the robust-
ness of the results achievable by variance-based sensitiv-
ity indices seems a too high price for practitioners in this 
field. For this reason we were wondering if the use of met-
amodels instead of the simulation model to carry out 
variance-based sensitivity analysis might represent the 
right compromise between accuracy of results and com-
putation parsimony, namely, the right bridge between 
theory and practice. The question is, of course, related to 
the quality of the metamodel and of its estimation proce-
dure. In the next sections we will deal with these issues.
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GAUSSIAN PROCESS METAMODELS FOR THE SENSITIVITY 
ANALYSIS OF COMPUTATIONALLY EXPENSIVE TRAFFIC 
SIMULATION MODELS  

As already stated, the intention of this paper is to pro-
vide a methodology for performing sensitivity analysis 
of a traffic simulation model using variance-based tech-
niques on a metamodel estimated from a relatively small 
sample of evaluations of the simulation models itself.  

The class of metamodel chosen is the Gaussian process 
metamodel. This class of metamodels extends the Krig-
ing principles of geo-statistics to any experimental sci-
ence by considering the correlation between two differ-
ent samples (real or model-derived) depending on the 
distance between input variables (15,16). Numerous 
studies have shown that this interpolating model pro-
vides a powerful statistical framework for computing an 
efficient predictor of model response (17,18), also in the 
case of traffic simulation models (9). This general consid-
eration, however, needs to be verified case by case, as any 
simulation model may hide peculiarities for which the 
principles on which Gaussian processes are based do not 
hold. In this light, several strategies can be adopted to 
estimate the best and most efficient surrogate for the 
simulation model. For further details, the interested 
reader may refer to (15,19). 

In this paper we adopted a more simplistic approach. 
First of all, we consider a low-discrepancy sequence of 
quasi-random numbers. As already mentioned, the low 
discrepancy ensures good coverage of the input space. 
Any of these sequences has a recursive number R of gen-
erations in which the discrepancy is minimum. We start 
simulating the model on the first 2R elements of the se-
quence. With the results of the first R combinations a 
Gaussian process approximation of the model is esti-
mated. Then the quality of the metamodel is assessed by 
comparing the outputs of the model in the second R in-
puts combinations with the predictions of the meta-
model in the same R combinations. If model outputs 
and metamodel predictions match to a sufficient degree, 
then the metamodel can be used in the place of the 
model. Otherwise an additional set of R model evalua-
tions is performed until the established quality criterion 
is met. 

The proposed methodology is schematically presented 
in Figure 1. An important variable to be defined is the 
quality criterion. The closer the metamodel needs to be 
to the model, the higher the number of model evalua-
tions required. The definition of the criterion is therefore 
very important and it’s strictly connected with the use of 
the metamodel. If the metamodel is used in place of the 
model in a design process or for a scenario analysis, then 
the quality required should be very high. On the con-
trary, if, as in (9), the metamodel is used to verify the ef-
fectiveness of a calibration procedure to be applied to the 
model, then the quality required might be lower. In the 
case of using a metamodel for the sensitivity analysis of a 
computationally expensive model it is not really neces-
sary to have a perfect match between model evaluations 
and metamodel predictions but it is important that the 
metamodel is able to reflect the way an input affects the 
model outputs. In the experience carried out in the 
present paper, we have seen that, even with a not perfect 
metamodel the estimation of the sensitivity indices 
proved to be already satisfactory. 

In the next section, the metamodel implemented, the 
validation criterion, the traffic model adopted and the 
low-discrepancy random sequence selected will be 
briefly described. 

CASE STUDY: GAUSSIAN PROCESS METAMODEL FOR THE 
SENSITIVITY ANALYSIS OF THE AIMSUN MESOSCOPIC 
TRAFFIC SIMULATION MODEL 

In the present section, the main elements of Figure 1, 
namely the i) low-discrepancy random sequence, ii) the 
traffic model, iii) the metamodel and iv) the validation 
criterion adopted in this paper are briefly presented. 

Sobol’s quasi-random number sequence 
The low-discrepancy random sequence used in this paper 
is the Sobol sequence, usually referred to as LP• sequence. 
The Sobol sequence was introduced for the first time in 
1967 by I.M.Sobol and it is considered one of the most 
suitable sequences to be used in Monte Carlo experi-
ments and for the evaluation of variance-based sensitiv-
ity indices (1). Providing a description of the rationale 
behind the sequence is beyond the aim of the present 
paper. For further information the interested reader may 
refer to (1,11,20). 

The implementation used for the derivation of the 
quasi-random sequences can be found in (21). As already 
mentioned, the minimum discrepancy of the sequence is 
achieved for the number of points R equal to a power of 
two. For this reason, we started estimating the meta-
model with 26 = 128 inputs combinations. 

Aimsun mesoscopic model 
This section provides an overview of the Aimsun mes-
oscopic simulation model, describing its network repre-
sentation and behavioural models, and focussing on car-
following and gap-acceptance models.  
Network Representation 

The Aimsun mesoscopic model uses a node/section 
representation of the network based on a directed graph.  

Basically, there are 3 geometric elements in the mes-
oscopic network representation: 
•  Nodes: in the mesoscopic representation they are 

treated as node servers, where vehicles are transferred 
from a section to a turning and then to their next 
section. 

• Turnings: the connections that vehicles use in their 
path. These turnings connect some/all lanes from 
the origin section to some/all lanes of the destina-

 

 

Figure 1. Flow chart of 
the metamodelling 
process validation 
methodology. When the 
validation condition is 
not satisfied a new set 
of inputs combinations 
is generated.
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tion section. The turning speed as well as the turning 
length is used to calculate the turning travel time. All 
vehicles are assumed to travel without any restric-
tion, namely at a free flow speed in turnings. 

•  Sections: the connectors between nodes. Each section 
has information about its geometry: number of 
lanes, speed limits and jam density. 

•  Centroids: the source of vehicles. They are used to 
generate vehicles. 

Behavioural models 
The mesoscopic level in Aimsun uses a vehicle-based 

representation of the traffic flow. The behavioral models 
are the following: 

• Behavioural models in sections: car-following and 
lane-changing  

• Behavioural models in nodes (node model): gap-ac-
ceptance and lane selection model 

The car-following model implemented in the mes-
oscopic model relies on a simplified version of the Gipps 
car-following model (22) used for the microscopic level. 
In particular, in the mesoscopic model, car-following and 
lane-changing models are applied to calculate the section 
travel time. This is the earliest time a vehicle can reach 
the end of the section, taking into account the current 
status of the section (that is, the number of vehicles in 
the section).

The number of vehicles in a section is bounded by the 
capacity of the section (SectionCapacity) defined as the 
number of vehicles that can stay at the same time in a 
section.

The Gap-Acceptance model is used to model give way 
behaviours. In particular the model is used when resolv-
ing node events in order to decide which of two vehicles 
in a conflicting movement has precedence. 

The Gap-Acceptance model used in the mesoscopic ap-
proach is a simplification of the Gap-Acceptance model 
used in the microscopic simulator. The model takes into 
account the travel time from both vehicles to the colli-
sion point; then it determines how long the vehicles 

need to clear the node/intersection and, finally,it pro-
duces the decision. 

The maximum give-way time parametersare used to 
determine when a driver starts to get impatient if he/she 
cannot find a gap. When the driver has been waiting 
more than this time, the safety margin (normally double 
the vehicle reaction time) is reduced linearly to 0. 

Case study
The casestudy has been focused on the sensitivity anal-

ysis of the car-following and gap-acceptance models, and 
has been conducted using five different test networks, 
representingthe main different configurations available 
in any type of network, either urban, non-urban or 
mixed, and cover all parameters involved in the behav-
ioural models analyzed.

The different test networks are shown in Figure 2:
1. Roundabout
2. Give-way Intersection
3. Traffic-light intersection
4. On-Ramp
5. Merge-Diverge

Parameters involved in the analysis are: 
• Reaction Time: the time it takes a driver to react to 

speed changes in the preceding vehicle. 
• Reaction Time at Stop: the time it takes a driver to 

react to a change in the respective traffic light. Only 
the first vehicle in this traffic light queue is affected 
by this reaction time at the traffic light - other vehi-
cles use the normal reaction time.  

• Vehicle Length: the mean length of vehicles in the 
traffic scenario 

• Jam Density: the capacity of the link. When a lane 
reaches this value it is considered full and no more 
vehicles can enter the lane until the first vehicle 
leaves.  

• Max Give-way time: when a vehicle is in a give-way 
situation, it applies the gap-acceptance model in 
order to cross.  

• Max acceleration: the maximum acceleration, in m/
s2, that a vehicle can achieve under any circum-
stances. This acceleration is used only in the gap-ac-
ceptance model for estimating the time needed to get 
to the collision point. 

 
In Figure 2, the different parameters have been re-

ported along with their range of variability. These ranges 
are an input of the sensitivity analysis (referred to as 
“input factor distributions” in Figure 1) since, as no other 
information is available, the different parameters are ex-
pected to be uniformly distributed among them. The 
table includes the replication random seed; this is a 
number that determines the sequence of random num-
bers used during the traffic simulation (for example to 
simulate the arrival process in the network, to assign pa-
rameters to the different vehicles and so on). In practice it 
is one of the main drivers of the model’s stochasticity. In 
common practice, its role is limited by simulating differ-
ent replications of the same traffic scenario with different 
random seeds and thereby averaging the results. Since, in 
this analysis, we would also like to ascertain the share of 
the outputs’ variance explained by the stochasticity, the 
random seed has been considered as one of the model 
inputs. As a final remark, it is worth mentioning that, in 
the analysis, the traffic demand has been fixed to a value 
not causing traffic saturation with the default parameter 
values. As will be highlighted in the concluding section 

Figure 2: Summary of 
the case study 
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the five test networks is 
reported above, while 

model parameters, their 
range of variability and 

other characteristics are 
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Figure2: Summary of the cases study considered in the analysis. The layout of the five test networks is 

reported above, while model parameters, their range of variability and other characteristics are reported 
below 

 
Parameters involved in the analysis are: 
 Reaction Time: the time it takes a driver to react to speed changes in the preceding vehicle. 
 Reaction Time at Stop: the time it takes a driver to react to a change in the respective traffic 

light. Only the first vehicle in this traffic light queue is affected by this reaction time at the 
traffic light - other vehicles use the normal reaction time.  

 Vehicle Length: the mean length of vehicles in the traffic scenario 
 Jam Density: the capacity of the link. When a lane reaches this value it is considered full and 

no more vehicles can enter the lane until the first vehicle leaves.  
 Max Give-way time: when a vehicle is in a give-way situation, it applies the gap-acceptance 

model in order to cross.  
 Max acceleration: the maximum acceleration, in m/s2, that a vehicle can achieve under any 

circumstances. This acceleration is used only in the gap-acceptance model for estimating the 
time needed to get to the collision point. 

 
InFigure 2, the different parameters have been reported along with their range of variability. 

These ranges are an input of the sensitivity analysis (referred to as “input factor distributions” in Figure 
1) since, as no other information is available, the different parameters are expected to be uniformly 
distributed among them. The table includes the replication random seed; this is a number that determines 
the sequence of random numbers used during the traffic simulation (for example to simulate the arrival 
process in the network, to assign parameters to the different vehicles and so on). In practice it is one of 
the main drivers of the model’sstochasticity. In common practice, its role is limited by simulating 
different replications of the same traffic scenario with different random seeds and thereby averaging the 
results. Since, in this analysis, we would also like to ascertain the share of the outputs’ variance explained 
by the stochasticity, the random seed has been considered as one of the model inputs.As a final remark, it 
is worth mentioning that, in the analysis, the traffic demand has been fixed to a value not causing traffic 
saturation with the default parameter values. As will be highlighted in the concluding section of the 
paper, the next stage of this research will see also the effect of changes in traffic demand being 
investigated. 

DACE (Design and Analysis of Computer Experiments) tool for Kriging approximations 
Although novelin the transportation field, Gaussian process (or Kriging) metamodels have become a 
popular mathematical method in several fields. For this reason, below we will provide only some 
elements to make the reader more familiar with the method, leaving the details to more specific articles 
and textbooks (the authors suggest the recent book of Kleijnen, 19, as a reference). 
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of the paper, the next stage of this research will see also 
the effect of changes in traffic demand being investi-
gated. 

DACE (Design and Analysis of Computer Experiments) 
tool for Kriging approximations 
Although novel in the transportation field, Gaussian 
process (or Kriging) metamodels have become a popular 
mathematical method in several fields. For this reason, 
below we will provide only some elements to make the 
reader more familiar with the method, leaving the details 
to more specific articles and textbooks (the authors sug-
gest the recent book of Kleijnen, 19, as a reference). 

Kriging metamodels were first developed in geostatis-
tics by Krige, even though the mathematical formulation 
was presented some years later by Matheron (23). A thor-
ough reference in this field can be considered (24). Pro-
viding details on the logic behind Krigingmetamodels is 
beyond the aim of the present paper. The interested 
reader can refer to (25) for this purpose.

In order to achieve the Gaussian process surrogate of 
the traffic simulation model, in the present workthe Mat-
lab toolbox DACE (26,27) has been used. This toolbox is 
freely available on the developer’s web-site.

Metamodel validation criterion 
As already pointed out, different criteria may be used to 
validate the estimated metamodel, also depending on the 
specific application. For quantitative analyses, we suggest 
using one of the methodologies proposed in (15). Since, 
in the present paper, we are using the metamodel to carry 
out the sensitivity analysis of the model, in the authors’ 
opinion these quantitative approaches do not represent 
the most correct way to validate the metamodel. In fact, 
it is required that the metamodel reflects the input-out-
put relationship and not that it is able to provide a per-
fect match with the model outputs. For this reason we 
used a visual approach in which we visually compared 
the input-output scatter plots coming from the meta-
model and the model (using a different sample than that 
used for the metamodel estimation, in accordance with 
the methodology of Figure 1).  

The reason for this choice is evident if we consider the 
scatter plots in Figure 2. Let us consider, for the sake of 
simplicity, just two possible input-output combinations. 
Pictures on the left refer to real model outputs whereas 
pictures on the right refer to the predictions of the meta-
model estimated with 128 parameter combinations. If we 
compare, point-by-point, the different values, we may 
easily conclude that the metamodel is not able to strictly 
reproduce the model behaviour (in both cases). However, 
if we look at the two top pictures, we can easily recognize 
the following features: i) the outputs spread in the same 
range [0,200]s even if the metamodel shows a more oscil-
latory character; ii) the most important input-output re-
lationship is achieved in the input range [0,10] and the 
pattern in the two cases is approximately the same; iii) in 
both the cases the cloud is denser toward the upper and 
lower bounds of the outputs and less dense in the centre. 

Similarly, in the two bottom pictures: i) in both the 
cases, most of the flow values are in the range 4.500-
5.200 veh/h, even if the metamodel shows a more oscilla-
tory character, ii) the most important input-output rela-
tionship is achieved in the input range [1.5,2] and the 
pattern in the two cases is approximately the same. 

From these common features, in the authors’ opinion, 
one may expect that the results of the sensitivity analysis 
should not be totally different. As it will be discussed in 

the next section, this is totally reflected in the results of 
the sensitivity analysis. 

Application of variance-based sensitivity analysis in the 
case study 
As already pointed out, the calculation of the sensitivity 
indices from equations (9-10) relies on the choice of the 
Monte Carlo size N. There are no universal recipes for this 
choice. In order to assess if the indices calculated for a 
given N are sufficiently stable, it is worth calculating their 
confidence interval. This can be easily carried out via a 
parametric bootstrapping (1). If the resulting confidence 
interval is sufficiently small, then the number of model 
evaluation can be considered sufficient. 

In the present application the sensitivity analysis on 
the real model was carried out considering a dimension 
of the Monte Carlo experiment N=211 and thus a total of 
36,864 simulations. The Kriging metamodel was instead 
estimated with a sample of 29 simulations. The sensitiv-
ity indices for the metamodel are then calculated consid-
ering a dimension of the Monte Carlo experiment N=213. 
It is worth noticing that if the metamodel is able to repro-
duce the model input-output relationship, the evaluation 
of the sensitivity indices may be significantly more relia-
ble, as they can be evaluated on a significantly higher 
number of model runs. 

Both for the model and the metamodel, the sensitivity 
analysis was carried out considering four different model 
outputs – density, mean flows, mean delay time, mean 
travel time – both on the whole network and on each sec-
tion of each network. This meant having, per each sce-
nario, from 16 to 52 analyses, repeated on the real model 
and on the metamodel.  

RESULTS 
In the present section, results of the model sensitivity 
analysis for both the model and the metamodel, outputs 
are presented in a bar-plot graph indicating the confi-
dence intervals. The superposition of first order (white 
bars) and total order (black bars) indices makes the reader 
immediately aware of the amount of variance each pa-
rameter accounts for per se and in combination with all  

 

 

 

Figure 3: Input-output 
scatter plots from the 
real model (pictures on 
the left) and the 
metamodel (pictures on 
the right) estimated with 
128 parameter 
combinations. Pictures 
on top refer to the 
Maximum Give-WayTime 
parameters and the 
Mean Delay Time output 
over the “GiveWay“ 
network. Pictures below 
refer to the reaction 
Time parameter and the 
mean flow output over 
the “On-ramp” network.
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the other parameters. For the sake of the available space, 
per each scenario, only results of the sensitivity analysis 
for network density and mean travel time are presented. 
Results are shown in Figures 4-5 for the sensitivity analy-
sis on the network density and on the network mean 
travel time respectively for the five scenarios. Per each 
figure, charts on the left show the sensitivity indices cal-
culated on the simulation models, while charts on the 
right show the same indices for the metamodel predic-
tions. In each chart, 90% confidence intervals for the sen-
sitivity indices are also shown (grey lines). 

Results clearly show the strength of the approach 
adopted. In four out of the five considered scenarios 
(namely, “Give Way”, “Merge Diverge”, “On Ramp” and 
“Traffic Lights”), the results of the analysis on the real 
model and the metamodel are significantly similar. In 
particular, in the four scenarios the parameters’ prioritiza-
tion based on both first order and total order indices is 
always the same and the percentage error in the value of 
first and total order indices is never greater than 10%. In 
addition, 90% confidence intervals of sensitivity indices 
are always smaller for metamodel-based indices (being 
calculated on a higher number of model evaluations).  

Problems arise with the “Roundabout” scenario. In this 
case, indeed, results are not only numerically different, 
but also the parameters prioritizations resulted differ-
ently. In particular, with both the outputs, a non-influen-
tial parameter, the “Reaction Time at Stop”, was found to 
be one of the most influential. The problem, in this case, 
is due to the fact that for certain parameter combina-
tions, a gridlock occurs in the model. This causes a dis-
continuity in the input-output function that affects the 
performance of the metamodel. However, the charts for 
the roundabout scenario also appear to be unsatisfactory 
for the indices calculated on the simulation model: they 
reveal a totally different model behaviour with respect to 
the other scenarios with total indices much greater than 
first order ones. In sensitivity analysis practice this occur-
rence is not very common and usually warns against pos-
sible errors. In practice, gridlocks are likely to have af-
fected the evaluation of sensitivity indices and therefore 
the results from the roundabout scenario are not consid-
ered reliable. 

Besides the comparison between the indices calculated 
with the model and those with the metamodel, it is also 
interesting to comment on the results of the different 
analyses in order to understand the relative influence of 
the different parameters on the outputs of the model for 
different network configurations. 

The following considerations hold: 
1) In all scenarios the parameter with the maximum 

total sensitivity index and the first order sensitivity 
index is the “Reaction Time” parameter. This was 
expected as it is the main parameter involved in the 
car-following model. More interestingly in “On 
Ramp”, “Merge Diverge” and “Traffic Lights” sce-
narios, the Reaction Time alone accounts for almost 
the 90% of the variance of the mean Travel Time. 
This means that with a correct estimation of this 
parameter the model is able to predict the average 
travel time of this type of network configurations 
with an uncertainty of less than 10%. 

2) The Vehicle Length also accounts for a certain share 
in the output variance for almost all network con-
figurations. This is quite interesting, as this parame-
ter is usually not considered in the calibration of 
traffic simulation models. 

3) As expected, the Give Way Time parameters ac-

counts for a significant amount of the output vari-
ance in the Give Way scenario. 

4) The Reaction Time at Stop Parameter accounts for 
just a small amount of output variance in the Traffic 
Lights scenario. A priori, a higher influence of this 
last parameter might be expected, but analyzing the 
results, this parameter has this low influence as it is 
applied only to the first vehicle stopped at a red traf-
fic light. 

5) The Random Seed also accounts for some 10% of 
the output variance. This has to be considered when 
evaluating the uncertainty in the results of a traffic 
study. 

CONCLUSIONS AND RECOMMENDATIONS  
With the increasing complexity of the models involved 
in the decision-making process it is becoming of crucial 
importance to analyse them, understand how they work 
and, in particular, what influences their capability to re-
produce physical phenomena. Global sensitivity analysis 
is the family of tools to be used with this aim. 

Unfortunately it is common opinion that only a mi-
nority of sensitivity analysis practitioners make use of the 
most sophisticated techniques made available in the re-
cent years. The problem is that, even with the most so-
phisticated sampling strategies, the exploration of the 
input space required by any global sensitivity analysis ap-
proach requires many model runs to be performed. When 
the model is computationally expensive, which is fairly 
common in the applications, sensitivity analysis becomes 
unfeasible. To deal with this issue, in recent years, some 
studies have made use of metamodels. Metamodels pro-
vide inexpensive emulators of complex and large compu-
tational models. 

In this paper we have evaluated the possibility of per-
forming the sensitivity analysis of the Aimsun mes-
oscopic simulation model on a Gaussian process meta-
model estimated on a few hundred combinations of the 
Aimsun parameters. A key factor in a correct and efficient 
estimation of the metamodel is the selection of a low dis-
crepancy sampling strategies. To this aim, Sobol se-
quences have been used.  

The comparison of the results achieved using the 
model and a metamodel estimated on 512 parameter 
combinations showed the strength and the parsimony of 
the tested methodology, opening up to future spread of 
the most sophisticated sensitivity analysis techniques in 
the traffic simulation field. 

Current research activities include the analysis of the 
combined impact of traffic demand and model parame-
ters on traffic simulations, the different impact of differ-
ent OD pairs (in order to simplify the OD estimation 
process) and so on. As usual, the ultimate objective of the 
work is to achieve a better understanding of traffic simu-
lation models in order to improve their use among re-
searchers and practitioners. 

The TRB Joint Simulation Subcommittee awarded this 
paper the 'Best Simulation Paper of 2013' award at the 
TRB Annual Conference in January 2014.

The original paper was presented at the 92nd Annual 
Meeting of the Transportation Research Board, January 
2013, Washington, D.C., and accepted for publication in 
the 2013 series of the Transportation Research Record: 
Journal of the Transportation Research Board. Copyright, 
National Academy of Sciences.”
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