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ABSTRACT1

This paper presents a modified bi-level optimization framework to solve the high-dimensionality of a non-2

linear OD estimation problem that is frequently found in congested networks. The upper-level is formulated3

as a generalized least square function of OD demand and traffic counts. The framework is modified by4

adding a recursive step to account explicitly the impact of OD demand variation on traffic observations,5

leading to improvement of the optimization function performance. The recursive step involves evaluation6

of the marginal effects for the subset of significant OD pairs whose variation leads to large changes in7

link flow proportions and traffic flows. Furthermore, to overcome the extra computational requirement, an8

heuristic method for obtaining a reduced set of OD pairs in the evaluation of marginal effects is proposed.9

In this way, the number of optimization function evaluations is reduced allowing the modeller to control10

the trade-off between simplicity of the model and the level of realism for large-scale, congested networks.11

A conventional bi-level optimization solutions approach is used in the performance assessment study. All12

the OD demand estimation approaches are implemented in a mesoscopic traffic simulation tool, Aimsun,13

to perform the traffic network loading on a large-scale network: the Vitoria urban network with 3249 OD14

pairs, 389 detectors, and 600km road network. The results demonstrate the applicability of the proposed15

solution approach to efficiently obtain dynamic OD demand estimates for large-scale, congested networks16

within computationally short periods.17



INTRODUCTION1

This paper focuses on the efficient estimation of OD matrices for congested networks, which are essential2

inputs for dynamic traffic management and Dynamic Traffic Assignment (DTA) applications. The absence3

of reliable OD matrices, especially in the peak hours, limits the potential for DTA deployment to analyse and4

alleviate traffic congestion as part of Intelligent Transportation System (ITS) measures. In order to remedy5

this problem a number of solutions are being examined and developed as part of the EU Horizon2020 SETA6

project which aims to examine the impact of multiple dynamic data sources, many of which, are sourced7

through telematics or mobile phones.8

The OD estimation problem itself is computationally intensive due to the complexity of the demand9

estimation problem, the approaches, and the fact that dynamic OD matrices for real-life transport networks10

typically constitute high dimensional data structures. One of the problems with estimating OD demand is11

that, in many cases, development and availability of emerging technologies for their direct observation is12

still in the early stages. Thus, OD trips have to be inferred from alternative, available traffic observations13

(e.g. link traffic counts, speeds). From a modelling point of view, the key difference between the OD14

demand estimation approaches, is how the relationship between OD demand and any available traffic data is15

defined, calculated and re-calculated throughout the estimation process. Therefore, an exact description of16

this relationship leads to an accurate description of traffic state reality in the network, but to more complexity17

as well.18

Initial efforts in research and practice have defined this relationship as linear with the assumption19

that variations in OD demand do not impose changes in all the traffic flow observations. However, the linear20

relationship may be invalid when congestion builds up in the network, resulting in a non-linear relationship21

between OD flows and link traffic observations. Consequently, the existence of non-linearity may lead22

to non-optimal solutions. In the past decades, researchers have attempted to develop new methods and23

techniques to capture the relationship and effects of OD demand variation on traffic observations. These24

methods can be categorized into three fundamental alternatives used to express this relationship: analytical25

derivation, simulation-based, and numerical-based approximation.26

Analytical derivation: Dynamic link-flow proportions, expressed in the assignment matrix form,27

are typically used to express the weights between OD flows and link traffic counts. Theoretically, these link-28

flow proportions can be analytically derived using network topology, path choice set, current route choice29

model and equilibrium travel times (1). However, it is recognised that the complexity of the problem at hand30

can quickly lead to intractable situations (1).31

Simulation-based approximation: The relationship between demand flows and traffic observa-32

tions (e.g. link traffic counts, speeds, density) is uncovered by using traffic simulation without the direct33

derivation of the assignment matrix. The most studied method is the Simultaneous Perturbation Stochastic34

Approximation (SPSA) method (2), (3), (4), (5), (6), (7) which allows one to approximate a descent gradient35

direction with significantly lower computational resources than through the explicit derivation. However,36

due to the stochasticity of the simulation model, for each perturbation of the SPSA or W-SPSA where37

gradient needs to be determined, the DTA has to be replicated R times, leading to 2R runs (7).38

Numerical approximation: Recent studies by ((8), (9), (10)) rely on linear approximation of the39

assignment matrix, which explicitly accounts for congestion effects. This definition requires the computa-40

tion of the marginal effects of demand flow change on the link-flow proportions at the current solution of41

each iteration. It is possible to use the finite differences approach to numerically approximate the Jacobian42

matrix by using a traffic simulation, but it would be required in every iteration of the gradient solution to43

perturb each element in the OD demand vector, one at a time, leading to 2RDK runs, where D the number44

of OD pairs in the network and K the number of time intervals for the simulation period. In their studies45

relationship between demand flows and link traffic counts has been examined.46

Given the high computational costs involved in evaluating marginal effects of OD demand changes47

on traffic observations, there is a need for heuristic approaches and algorithms that can identify solutions48
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with a good performance at a low computational cost. To overcome the computational overhead, a number1

of authors have proposed heuristic-based approaches. Toledo and Kolechkina (2013) neglected the effect2

of changes in one OD pair over the other OD pairs in the assignment matrix. Frederix, Viti and Tampre3

(2013) implemented space decomposition of the network in the congested and non-congested sub-networks,4

where derivatives were computed only for the congested area. Shafiei et al. (2017) reduced computation5

costs through iterations progress and computing derivatives on OD pairs whose flows have a higher tendency6

to vary during the dynamic OD demand estimation process. However, their approach requires in the second7

iteration step evaluation of the derivatives for all the OD pairs that still leads to 3DK simulation runs and8

high computational costs. Note that three simulation evaluations per each OD pair within one iteration9

step are required to compute the numerical derivatives of the first Taylor approximation. Also, all these10

approaches rely on strong heuristic assumptions such as ignoring the effect of OD demand changes outside of11

congested area as shown in Djukic et.al (2017) ((11)) or have been tested on relatively small or medium sized12

networks. Further research is therefore necessary to develop approaches to solve nonlinear OD estimation13

problems that will guarantee reliability and computational efficiency in the large-scale networks.14

Here we extend the previous work by proposing a modified bi-level optimization solution approach15

to estimate dynamic OD demand for large-scale, congested networks that accounts for relationship approx-16

imation between traffic counts and OD flows. This relationship has been computed for the subset of the OD17

pairs when performance of the objective function has been deteriorated. The subset of the most important18

OD pairs in the network has been identified based on the highest variation in the link flows obtained with19

demand derived in two consecutive iteration steps. Reducing the problem dimensionality through selection20

of the most significant OD pairs replaces the conventional approach of computing derivatives for all OD21

pairs, whether through all the iteration steps or in the initial step as proposed in (10). The importance of this22

approach lies in the possibility to capture the most important effects of congestion, and not only at congested23

links, by relaxing assumption of constant link-flow proportions without loss of accuracy and considerable24

decrease in model dimensionality and computational complexity. In addition, model formulation and solu-25

tion is not limited only to link traffic counts. For example, other traffic observations can be added in traffic26

measurements vector as well as in function for the selection of the most important OD pairs.27

The paper is organized as follows. In the first Section, we summarize the main challenges in defin-28

ing the non-linear relationship between traffic observations and OD demand. In the second Section, we29

present the modified bi-level optimization framework with an additional recursive step to overcome the di-30

vergence of the optimization function performance. Next, we explore the properties of reducing the number31

of optimization function evaluations by defining the subset of significant OD pairs whose variation leads32

to large changes in link-flow proportions and traffic flows. Subsequently, we demonstrate the performance33

of the proposed OD estimation model on a large-scale network, Vitoria, Spain. The paper closes with a34

discussion on further research perspectives of the OD demand estimation model.35

THE PROBLEM FORMULATION36

This section describes the most critical issue in OD matrix estimation, whether static or dynamic, the re-37

lationship (mapping) of the observed traffic condition data with unobserved OD flows. This relationship38

is often accomplished by means of an assignment matrix. In the dynamic problem, the assignment matrix39

depends on link and path travel times and traveller route choice fractions - all of which are time-varying,40

and the result of dynamic network loading models and route choice models. These dynamics are reflected41

in travel times between each origin and destination trips on a network, influenced by traffic link flow. While42

a vast body of literature has been developed in this area over the past two decades, this section focuses on43

some of the efforts that highlight the basic dimensions of the problem.44

The general OD estimation problem is to find an estimate of OD demand by effectively utilizing45

traffic and demand observations. Let Ω ⊆ N × N be set of all n OD pairs in the network, and L
′ ⊆ L46

be the set of l links where traffic data observations are available. The time horizon under consideration is47
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discretised into R time intervals of equal duration, indexed by r = 1, 2, ..., R. The OD matrix, x = {xnr},1

defines the demand for each OD pair n ∈ N with departure time interval r ∈ R. Prior information on the2

OD matrix is defined as vector, x̃ = {x̃nr}. The vector ỹ = {ỹlt} defines traffic flow observations for time3

interval t = 1, 2, ..., T , for each link in L
′
. It is also assumed that T and R describe the same length of time4

interval, but their decomposition to time intervals can be different.5

The dynamic OD estimation problem can be formulated as a constraint optimization problem (12)
as:

min
x≥0

Z(x) = αf(x, x̃) + (1− α)f(y, ỹ) (1)

Regardless of the function f used, the purpose is to obtain an OD demand that yields OD flows and6

traffic data as closely as possible to their observed values. When solving the OD problem in Eq. (1) the7

relationship between traffic observations and OD demand has to be defined, implicitly or explicitly. Most8

dynamic OD demand estimation methods, define this relationship implicitly by the traffic assignment model9

that can be expressed as:10

ŷt =

r∑
h=r−k

Aht xh (2)

There are two main drawbacks of relationship defined in Eq (2):11

1. Separability of traffic count observations: it assumes that the traffic flow observed at the link l
during time interval t can always and only be changed by changing one of the OD flows that passes link
l when xh is assigned in the network. This assumption of separability is incompatible with some typical
phenomena in congested networks, such as congestion spillback between links and time lags due to the
delay during congestion. In these cases, it is very likely that increasing an OD flow will cause delays to
other flows that do not pass that time-space interval, hereby altering the amount of flow passing the link in
the considered time interval. This issue has been addressed in past studies ((13), (14), (15)). Frederix, Viti
and Tampre (9) suggested using a Taylor approximation to specify the linear approximation of Eq. (2) using
a non-separable response function, given by

ŷt =
r∑

h=r−k
Aht (x0)xr +

r∑
h=r−k′

(xh − x0h)

 r∑
h′=r−k′

d(Ah
′

t (xh′ ))

dxh
x0h′

 (3)

2. Limited only to one data source: formulation of relationship by assignment matrix in Eq. (2)12

and Eq. (3) restricts dynamic OD demand estimation problem to the use of traffic count data only, which13

can potentially over-fit to counts at the expense of traffic dynamics. Relationships between traffic condition14

data, such as speeds and densities, and OD flows are expected to be non-linear and approximations similar15

to the assignment matrix cannot be justified (16). This issue has been addressed in the past studies ((16),16

(4), (6), (7)) who proposed use of traffic simulation models to capture the nonlinear relationship between17

OD flows and traffic observations instead of the assignment matrix.18

Although presented solutions significantly contributed to quality improvement of dynamic OD de-19

mand estimates, they still share a common challenge to overcome high computational costs. A complicating20

factor in utilizing these methods for estimation or prediction purposes, is that OD matrices are very large21

data structures, that grows rapidly in large networks. Even in case where high-dimensional OD flows can be22

reduced (see e.g. (17) and this is not entirely unlikely, there are serious methodological difficulties in finding23

optimal solutions (e.g. getting stuck in local minima, slow convergence, high number of simulation runs,24

etc.), aside from the computational and memory requirements for such a procedure on the basis of thousands25

(to millions) of traffic observations. For example, computing the exact Jacobian vector in the second term26

of Eq. (3) with respect to changes in OD flows for each OD pair remains intractable even when an efficient,27

well calibrated, DTA model is used.28
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METHODOLOGY1

Algorithms proposed in literature to solve the problem given in Eq. (1) that incorporate computation of the2

marginal effects of demand changes on traffic observations, lead to high computational costs for medium- or3

large-scale networks. In this situation, dimensionality reduction of simulation runs required to capture these4

effects is necessary, leading to improve computational performance. In order to overcome problems related5

to the dimensionality of OD demand problem we propose the following heuristic approach. First of all, we6

propose the use of Eq. (3) to capture marginal effects with respect to changes in OD flows, rather than using7

a more conventional approach with linear assignment proportions given by Eq. (2). Secondly, we propose8

to use Eq. (3) on the subset of the OD pairs whose variation in demand creates the divergence of the cost9

function given by the objective function defined in Eq. (1). Lastly, we suggest using an initial OD matrix that10

produces similar congestion patterns as those observed in reality, i.e. that allows one to start with the correct11

traffic regime. It is convenient to start the presentation of the proposed solution approach with reference12

to the idea of OD demand estimation problem formulation as bi-level optimization framework. Then, we13

provide modified bi-level optimization framework with recursive step to account the marginal effects of OD14

demand on the link-flow proportions.15

Conventional OD model formulation in bi-level optimization framework16

Dynamic OD demand estimation problem can be defined as a bi-level optimization framework. The main17

advantage of using the bi-level formulation is the ability to capture network congestion effects in the dynamic18

OD demand estimation problem, as the traffic assignment model can be defined as an optimization problem19

in itself. The upper level is formulated as an ordinary least square (OLS) problem, which estimates the20

dynamic OD demand based on the given link-flow proportions. Assuming that errors are independently21

and identically normally distributed, the objective function aims to minimize the square distance between22

estimated and observed traffic flows, and the estimated and prior OD demand matrix, defined in Eq. (4) as23

follows:24

min
x≥0

Z(x) = α ‖x− x̃‖2 + ‖(A(x)x− ỹ‖2 (4)

subject to
y = DTA(x) (5)

Here we assume that the entire set of link traffic counts for the analysis period, L
′ × T , is used to simul-25

taneously estimate the OD demand for all time intervals, N × R. The link-flow proportions are, in turn,26

generated from the dynamic traffic network loading problem at the lower level, which can be solved through27

a simulation-based DTA procedure (in this case, Aimsun software (18)).28

In general terms, all dynamic OD demand estimation methods defined as a bi-level optimization29

problem aim to find the most probable OD matrix by iteratively solving problems defined at upper and30

lower-level. The iterative solution algorithm is given as follows:

Algorithm 1 The conventional bi-level optimization algorithm
Step 1. Initialization. Initiate prior OD demand matrix, set k = 0.
Step 2. Assignment. Assign the demand to the network to obtain assignment matrix,Ahk and estimated link
traffic counts on the links with traffic observations, by Eq. (2) or Eq. (3).
Step 3. Convergence test. Check objective function value convergence. If objective function value has
converged, stop and accept the current demand. Otherwise, proceed to step 4.
Step 4. Update OD demand. Estimate OD demand with link flows obtained from DTA, as given by Eq.
(2). Go to step 2, k = k + 1.
End

31
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When non-separability of traffic observations is considered, as was shown in the previous section,1

Eq.(3) has to be applied in Step 2 to capture the marginal effects of the demand variation on the changes2

in traffic flow observations. The traffic assignment relationship given in Eq.(3) can be solved by computing3

the numerical derivatives using a finite or central differences method of the traffic link flows with respect to4

changes in all OD pairs. This requires perturbing each OD pair in the OD demand two times, one at the time,5

resulting in 2NR traffic simulation runs and objective function evaluations per iteration step. It is obvious6

that such an approach will result in computationally expensive tasks, that have to be overcome.7

Modified bi-level optimization framework8

The bi-level optimization framework presented in the previous section is modified to meet the following9

requirements for congested, large-scale networks:10

• Relax assumption on link-flow proportions derived from DTA by computing the marginal effects11

of the demand deviations on link flows given by Eq.(3);12

• Reduce the number of OD variables in Eq.(3) through the inclusion of only those OD pairs whose13

change in demand values cause significant deviations in the link flows;14

• Keep the computational costs lower.15

These requirements are implemented through the following modified iterative solution algorithm with re-16

cursive step:17

Algorithm 2 The modified bi-level optimization algorithm

Step 1. Initialization. Initiate prior OD demand matrix, set k = 0, I
′

= ∅.
Step 2. Assignment. Assign the demand to the network to obtain assignment matrix, Ahk and estimated link
traffic counts on the links with traffic observations, by Eq.(2) or Eq.(3).
Step 3. Convergence test. Check objective function value convergence. If objective function value has
converged, stop and accept the current demand. Otherwise, proceed to step 4.
Step 4. OF performance test. Check performance of the objective function value. If objective function
decreases proceed to step 5. Otherwise, proceed to step 6, k = k − 1.
Step 5. Update OD demand. Estimate OD demand with link flows obtained from DTA, as given by Eq.(2).
Otherwise, proceed to step 2, k = k + 1.
Step 6. Select OD pairs. Determine OD pairs whose variation has a considerable impact on link flow
variation in the previous iteration and insert them in I

′
.

Step 7. Update assignment. Update the link-flow proportions in the assignment matrix Ak−1, with values
obtained from Equation (3) for the selected OD pairs in I

′
.

Step 8. Update OD demand. Estimate OD demand with link flows obtained from Eq.(3). Go to step 2,
k = k + 1.
End

The common and modified bi-level optimization framework with inputs and outputs for OD demand18

estimation is illustrated in Figure 1.19
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Yes

Cost function 
decreases?

Initialization
Set x0

Set k = 0

Traffic assignment (DTA)
Assign xk to the network to obtain Ak and yk

Set k = k

Set k = k - 1

Estimate OD demand
Xk+1 = Xk + dk⍬k 

Convergence
?

Estimated OD 
demand

No

No

Yes

Select OD pairs
that satisfied criteria yk - yr > e

Compute derivatives for selected OD pairs
Update Ak and yk according to Equation (3)

Set k = k + 1

Estimate OD demand
Xk+1 = Xk + dk⍬ k 

Set k = k + 1

Common solution approach

Modified solution approach

FIGURE 1 Generic algorithm based on the proposed modified bi-level solution framework.

Note that the proposed solution algorithm in Steps 6 and 7 uses a demand with one iteration step1

latency because the updated demand at iteration step k caused the increase of the objective function value.2

Therefore, following the modified bi-level framework, Step 8 denotes correction of the state variable for3

iteration k, using the information from the link-flow proportions and link flows for iteration k = k − 1,4

obtained in Steps 6 and 7. In Step 6, we analyse the change in the link flows obtained with demand assigned5

in iteration step k and k = k − 1, and determine the link flows with the highest variation. Using the6

information from the link flow proportions matrix, we can identify which OD flows are crossing these links7

with the highest flow variation and set them in I
′
. Then, in Step 7 the elements of the link-flow proportion8

matrix are corrected for these OD pairs using the Eq.(3). The upper-level problem in Steps 5 and 8 is9

solved using the gradient decent method. The OD demand estimation results are evaluated in Step 3 against10

termination criteria and the procedure would continue if termination criteria is not met. Finally, the Steps 6-811

reflect our corrected knowledge on the OD demand state at iteration k = k − 1 to improve the performance12

of the solution algorithm.13

Method for solving the upper-level problem14

Let xk be the demand at iteration step k, and Ak and yk the assignment matrix and simulated traffic counts15

given by this demand. As an approximation to the OD estimation objective function given in Eq. (4) that16

we want to minimize, we consider the following auxiliary objective function:17

Zk(x) = ‖ỹ − yk −Ak(x− xk)‖2 + α ‖x− x̃‖2 (6)

There are different types of exact and heuristic methods proposed in the literature that can be em-18

ployed to solve the optimization problem defined in Eq. (6) with non-negative variable constraints. At every19
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outer iteration step, the gradient descent method is selected to minimize the objective function defined in1

Eq. (6), which uses the gradient as search direction:2

d = −OZk (7)

where3

OZk(x) = 2α(x− x̃)2 + 2(ATkAkx−ATk ỹ +ATk yk −ATkAkxk) (8)

To perform this gradient method, we start at x = xk and we performM gradient steps, the direction4

being given by the latter Eg. (8). At internal step m ≤ M , let us denote the estimated demand by xmk .5

After determining the search direction, which is given by OZ(xmk ), the optimal step length, θm needs to be6

obtained in each internal iteration step. The following criterion is used to compute the step size:7

θm = min
θm

Z(xmk − θmOZ(xmk )) (9)

The exact line search procedure proposed by Cauchy (1847) (19) is used to compute the step size.8

In the case where Z is a quadratic function, the optimal step can be computed analytically. In this case, the9

optimal step size is computed using the following expression:10

θm =
‖OZ(xmk )‖2∥∥OZ(xmk )
∥∥2 +

∥∥AkOZ(xmk )
∥∥2 (10)

NUMERICAL EXPERIMENT DESIGN11

In this section, we will first describe the input data used, e.g. historical OD demand generation and the DTA12

traffic assignment procedure. We consider three assessment scenarios in terms of link-flow proportions13

derivation (i.e. with and without computation of marginal effects). Numerical experiments are performed14

on a large-scale network, (Vitoria, Basque Country, Spain) with real data to evaluate the performance of the15

proposed approach.16

DTA with mesoscopic simulation model17

In the experiments, we use the mesoscopic event-based demand and supply models in Aimsun, each synthe-18

sizing microscopic and macroscopic modelling concept. The travel demand in Aimsun is represented by dy-19

namic OD demand matrices. Vehicle generation is performed for each OD pair separately with arrival times20

that follow an exponential distribution. The iterative interaction between demand and supply models allows21

the system to update the set of routes and the travel times after each iteration leading to robust estimation22

and prediction of traffic conditions in the network. For this study, a route choice set will be pre-computed23

in Aimsun and used as fixed for all the simulation runs in performance analysis. In this way, dependence of24

re-routing effects on the changes in the OD demand is ignored. Here we focus on investigating the effects25

of travel time variation and congestion spill-back on traffic observations in the network.26

Network and traffic data27

The proposed OD estimation approach is evaluated for the large-scale network in Vitoria, consisting of28

57 zones, 3249 OD pairs (57 x 57) with 2800 intersections and 389 detectors, presented as black dots in29

Figure 2. This network is available in the mesoscopic version of the Aimsun traffic simulation model for30

the reproduction of traffic propagation over the network. The true OD demand is available for this network,31

which allows analysts to assess the performance of the proposed method. The true assignment matrix and32

traffic counts on detectors are derived from the assignment of true OD matrix in Aimsun for the evening33

period from 19:00 to 20:00 reflecting a congested state of the network. The simulation period is divided into34
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15 minute time intervals with an additional warm-up time interval, R = 5. The link flows resulting from the1

assignment of the true OD demand are used to obtain the real traffic count data per observation time interval.2

FIGURE 2 The Vitoria network, Basque Country, Spain

The historical OD demand flows are derived by adding a uniform normal component in the range3

of ± 40% to the real OD demand to produce uncertainty in the historical demand and congestion in the4

network.5

Assessment scenario6

Three assessment scenarios have been defined for the performance assessment of the proposed solution ap-7

proach. The main goal of this task is to evaluate the expected improvements due to exact implementation8

of marginal effects of OD demand variations. Thus, dynamic OD estimation method that shares same per-9

formance measure and solution framework, i.e. least square (LS) error measure defined in bi-level solution10

framework is selected as a benchmark scenario. Further, two solution strategies in selecting the number of11

OD pairs have been defined to assess the performance of the proposed OD estimation method. Subsets of OD12

pairs involved in proposed modified solution approach are defined, such that in every iteration step we can13

identify potential set of OD pairs that impacts the 90% and 80% of variation in traffic counts. For example,14

the distance between observed and simulated traffic counts is computed, and arranged in decreasing order15

of deviation magnitude in each iteration step. Then, OD pairs that dominate changes in the traffic detectors16

with deviation higher then 90% are selected for their evaluation of the marginal effects in demand estimation17

process, here denoted as I
′

= 90%. In this evaluation task, three assessment scenarios are considered:18

1. Conventional bi-level approach: LS solved by conventional bi-level solution approach without19

explicit non-linear relationship formulation;20

2. Modified bi-level approach with I ′
= 90%21

3. Modified bi-level approach with I ′
= 80%22

A point of interest now is finding out to which extent the estimation accuracy and computational23

time are improved. To get a better grasp of the algorithms real world performance, results are presented in24

the following section.25
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RESULTS1

The performance of the objective function for all three scenarios are presented in Figure 3. For the purpose2

of this study, convergence was defined as reaching an objective function value that is three times lower than3

the initial value obtained (by any of the algorithms) within 20 iterations. The performance of the proposed4

modified bi-level solution approach demonstrates satisfying results, since it is able to maintain the decrease5

of the objective function value through iteration steps. Modified bi-level approach with both OD pair sub-6

sets demonstrate convergence trend to a local minimum, in contrast to conventional bi-level optimization7

framework. Note that conventional bi-level approach did not reach convergence, which seems to indicate8

that search directions that algorithm produces are increasingly inefficient as the algorithm progress. For the9

purpose of visualisation, we have shown results for the conventional bi-level approach up to iteration step10

13 and stored the results for further analysis from this step.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Modified	bi-level	approach	(I'=90%) 287,336193,341125,394125,921117,831118,626115,011113,806115,011107,781104,165104,165110,191108,986107,781108,986125,857119,831117,421108,986

Modified	bi-level	approach	(I'=80%) 289,327192,309128,277129,247118,575115,665114,694116,635111,784109,844108,873102,082114,694148,651121,486104,022106,933104,993100,14299,172.

Conventional	bi-level	approach 291,268193,279137,979124,396125,366122,456111,784118,575103,052104,993156,412117,605268,954
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290,000.00
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Outer	iteration	step

Modified	bi-level	approach	 (I'=90%) Modified	bi-level	approach	 (I'=80%)
Conventional	bi-level	approach

No	of	OD	pairs	in	I'	=	90% 0 0 0 0 0 4 8 0 0 0 4 4 8 4 4 4 0 0 0 4

No	of	OD	pairs	in	I'	=	80% 0 0 0 0 0 4 18 4 0 8 0 4 10 12 0 8 0 8 0 0

FIGURE 3 Comparison of the objective function performance
11

It can be observed from Figure 3 that the conventional bi-level approach runs into an unstable12

convergence trend from the iteration step 9. This effect is a consequence of initial OD matrix that reflects13

over fitted demand, very close to the congestion level. When demand obtained in iteration step 9 is assigned14

in the network it will result in the network blockage due to spill-back propagation. Thus, assignment matrix15

obtained out of this simulation step is not realistic and if used further by algorithm in iteration step 10 results16

in sudden divergence of cost function and intractable solution. Results shown in Figure’s 3 table reveal that17

the proposed modified bi-level approach identified the cause of function deterioration in the iteration step18

6, and by updating the elements of the assignment matrix in the recursive step guaranteed more stable19

objective function convergence. Also, results show that extending the number of OD pairs involved in20

updating the link flow proportions leads to objective function performance improvement (e.g., see modified21

bi-level approach with I
′

= 80% in Figure 3) although with slight higher objective function deterioration as22
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shown in iteration step 12 and 13. This effect can be explained by definition of the recursive step in modified1

approach, where derivatives have been computed for the larger set of OD pairs and whose effect has a better2

impact in finding more accurate demand solution. However, this effect can be further explored by extending3

the list of OD pairs whose variance dominates deviations in the traffic flows.4

Figure 4 shows the estimated total OD demand per departure time interval for OD demand solu-5

tion approaches. We have included the real OD demand in the figure as a point of reference. All three6

tested solutions demonstrate a tendency to slightly overestimate demand as a consequence of incorrect data7

interpretation from loop detectors when congestion level increase. However, performance of the proposed8

modified bi-level approach demonstrates a capacity to recognize an overestimation trend and improves de-9

mand estimation using the first order approximation given by Eq.(3) to update elements of the assignment10

matrix in time intervals when congestion occurs in the network. In addition, results indicate unstable per-11

formance of the conventional bi-level approach, where the misinterpreted impact of the congestion led to12

under- and overestimation of total demand.13
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FIGURE 4 Estimated OD demand per departure time interval

Next, it is important to investigate how these estimated OD demands once assigned to the network14

can produce traffic counts close to their real observations. Figure 5 provides a performance overview of ap-15

proaches in terms of the relationship between simulated and observed traffic counts. It appears clearly from16

Figure 5 that all the approaches show correlation increase and significant reductions in RMSE and RMSN17

error. Results in Figure 5(d) indicate that proposed modified bi-level approach with higher sensitivity to de-18

mand changes has the best performance with improvement of the RMSE value for 52.29% compared to the19

initial value before OD demand estimation. It is interesting to observe from Figure 5(b) that a conventional20

bi-level approach demonstrates slightly lower reduction of the RMSE value for 45.19%. However, note that21

results presented here for the conventional bi-level approach are obtained from iteration step 13, since the22

method did not show a tendency to converge until iteration step 20 as discussed above. In turn, performance23

results of conventional bi-level approach should be considered with caution. A detailed examination of Fig-24

ures 4, 5(d) and 5(c), shows that the more OD pairs are included in the evaluation of the marginal effects25

of demand variation on the traffic flows the better the demand estimation results obtained, in terms of total26



Djukic, et al. 13

demand and traffic flows.1

(a) Initial state from prior OD demand (b) Conventional bi-level framework

(c) Modified bi-level approach with I
′
= 90% (d) Modified bi-level approach with I

′
= 80%

FIGURE 5 Scatterplot of the observed and simulated traffic counts per solution approach

Note that initial idea was to solve the computational complexity of the OD demand estimation2

problem for real case applications while maintaining reliable estimation results in the congested networks.3

Therefore, Table 1 shows the run time and number of simulation runs for each of the tested solutions.4

TABLE 1 CPU computation time and the number of the DTA simulations
CPU time No. of assignment

simulations
Aimsun simulation
time

Demand estimation
time (Python)

Conventional bi-level
method

13 26min 31min

Modified bi-level
method I ′ = 90%

64 2h 2 min 51min

Modified bi-level
method I ′ = 80%

96 3h 4min 1h 16min

Benchmark method
(Shafiei (2017))

366 12h 12min 14h 32min

Table 1 shows that the conventional bi-level method requires the least number of simulation runs.5

This can be explained as follows: the conventional algorithm requires one simulation run in each iteration,6

compared to the other two solutions that require three simulation runs for each OD pair within one iteration7
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step to compute the numerical derivatives defined by Eq. (3). As a result, the gain in terms of run times1

obtained by the use of an assignment matrix without updates is large, but with a trade off on the lower2

quality of estimation results. Furthermore, this degradation in estimation accuracy is expected to increase3

for larger and more complex networks. We can observe significant CPU computation time reduction of4

the proposed modified bi-level solution approach compared to the benchmark method proposed by (10).5

This effect can be explained by definition of solution approaches. The proposed modified bi-level approach6

calculates derivatives for the subset of the OD pairs when deterioration of the objective function is observed7

in contrasted to the benchmark method that requires in the second iteration step evaluation of the derivatives8

for all the OD pairs. These times have been obtained by running Aimsun and Python on DELL Latitude9

E6430 with processor Intel Core i5-3320M, and2.6GHz memory.10

CONCLUSIONS11

The common approach usually adopted in dynamic OD demand estimation and prediction consists of solv-12

ing an optimization problem in which the distance between observed and simulated traffic conditions is13

minimized by assuming the relationship between OD flows and traffic observations is independent of traffic14

conditions in the network. This approach has a severe shortcoming as it does not take into account the impact15

of demand flow variation on traffic observations in congested networks. Modelling of traffic observations16

dependency on variations in OD flows has been identified by many researchers as a key challenge in the17

estimation and prediction of high-quality OD matrices.18

In this paper, we proposed a modified bi-level optimization framework to solve the high-dimensionality19

of non-linear OD estimation problem by computing the marginal effects of demand flow variation only for20

the most significant OD pairs with respect to traffic observations. This approach allows the modeller to21

control the trade-off between simplicity of the model and the level of realism. Several specific solution22

approaches that differ in the assumptions on the link-flow proportions derivation and solution algorithms23

were used in the performance evaluation study. From the results presented in this contribution, modified24

bi-level approach appears to outperform conventional bi-level solution with fixed linear relationship signif-25

icantly and achieves great improvement over the reference case. Results show that proposed approach is26

able to capture the effect of congestion in the network and to reproduce the observed traffic conditions with27

high level of accuracy. Furthermore, we show that deriving a non-linear relationship between OD demand28

and traffic counts for the subset of the OD pairs will lead to computational efficiency with a guaranteed29

improvement in result’s accuracy.30

An improvement of the algorithm presented in this paper can been seen in two directions: 1) ex-31

tension of the model as a multi-objective function with traffic condition data (i.e., speed, density, demand32

derived from floating car data) can be considered to overcome limitation of the method relying only on33

traffic count data; 2) explore alternative gradient solution approaches in solving the upper-level problem to34

avoid convergence in local minima, especially when initial OD matrix does not reflect congestion pattern in35

reality.36
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